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field and that the relative complex permeability of the material be
of unit magnitude. Limitations for practical sorting systems in terms
of accuracy, stability, and object properties are to be determined.
Also, a variety of other types of microwave resonators could be
used for this purpose. '
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Efficient Computation of High-Frequency
Two-Dimensional Effects in Multiconductor
Printed Interconnects

Lawrence Carin

Abstract—The spectral domain technique with a Galerkin moment
method solution is used to study high-frequency, two-dimensional
effects such as dispersion and leakage in multiconductor printed inter-
connects. A simple asymptotic procedure is used to significantly im-
prove the convergence of oscillatory spectral integrals involving distant
expansion and testing functions. Examples are given for leaky waves
on two multiconductor printed transmission line geometries.
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I. INTRODUCTION

Multiconductor transmission lines have been the interest of nu-
merous researchers for several decades. Recently, there has been
much interest in multiconductor printed transmission lines used as
interconnects in high-speed integrated circuits [1], [2]. In this pa-
per, concentration will be placed on developing an asymptotic
technique for the efficient numerical analysis of high-frequency,
two-dimensional effects such as dispersion and leakage in printed
interconnects.

The numerical analysis is formulatd in the spectral domain with
a Galerkin moment method solution [1], [2]. Although this method
is well known, special care must be taken when studying high-
frequency effects such as dispersion and leakage. The reaction in-
tegrals which must be evaluated in the moment method solution are
often highly oscillatory. This is especially true for the problem at
hand: since a multiconductor system is considered, expansion and
testing functions will often be relatively far apart in space. This
coupled with the fact that leakage and dispersion usually are im-
portant at relatively high frequencies, leads to spectral integrals
which are often highly oscillatory and hence CPU intensive.

Oscillatory integrals occur often in electromagnetic problems and
therefore several asymptotic techniques have been developed for
their evaluation. Much previous work has been directed at the in-
vestigation of three-dimensional layered problems and has led to
analyses which, although general, are more complicated than what
is needed in this two-dimensional study. In three-dimensional lay-
ered problems, each matrix component in a moment method solu-
tion consists of a double inverse Fourier transform (found using a
plane wave spectral formulation) [3]. Only under very special con-
ditions (see Appendix I of [4]), not possible for most practical test-
ing and expansion functions, can this double integral be reduced to
a one-dimensional Sommerfeld type integral. Hence, most pre-
vious asymptotic treatments of spectral integrals have dealt with
the efficient computation of the Green’s function [3], [6]. which
for a three (or two) dimensional layered problem can be written as
a single semi-infinite integral of the Sommerfeld type [4]. In these
approaches, after efficiently determining the space domain Green's
function, one is still required to evaluate space domain integrals
involving expansion and testing functions. The key difference be-
tween the asymptotic procedure developed here and those used pre-
viously for three-dimensional problems is that for distant expansion
and testing functions, the entire matrix component is efficiently
evaluated asymptotically in the spectral domain, without the need
for subsequent space domain integration.

In Section II, the spectral domain technique is briefly reviewed -
and then, by considering the physical nature of modes on printed
interconnects, an ¢fficient asymptotic technique is developed for
studying high-frequency effects in multiconductor printed intercon-
nects. The asymptotic technique is then used to study leaky waves
on two example structures, and the results are compared with data
in the literature.

II. ANALYSIS

A. Formulation

The spectral domain technique with a Galerkin moment method
solution [1], [2] will be used to calculate the complex propagation
constants for multiconductor printed transmission lines, such as that
depicted in Fig. 1. This analysis results in a matrix equation with
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Fig. 1. Layered printed transmission geometry for which results are given
in this paper. Layers 1 and 3 are air and layer 2 has dielectric constant ¢,.

components of the form
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where G, (v, k,, y; ¥') is the spectral dyadic Green’s function com-
ponent for a k-directed electric field component located at y due to
an [-directed surface current located at y’, J,;(k,, y') is an I-directed
expansion current in the spectral domain located at y', Jy(k,, y) is
a k-directed testing function in the spectral domain located at y,
and A is the distance in x between the centers of the testing and
expansion functions in the space domain. In (1), / and k can both
be either x or z and the superscript * denotes complex conjugate.
The spectral integral exists on the real axis unless poles are en-
countered and/or integration around branch cuts is required. In (1)
it is assumed the modes have an ¢ ¥ longitudinal dependence (y
= — ja). .

In printed transmission line applications, one usually operates in
a regime in which all higher order modes are below cutoff and are
therefore only of importance at discontinuities (which are not ad-
dressed here). This paper will therefore concentrate on the N — 1
zero-cutoff-frequency modes in an N conductor system [1]. Since
these modes are slow-waves, no radiation into space-waves will
exist. Hence an open physical structure (no top and/or bottom con-
ducting surfaces) can be accurately modeled by placing conducting
covers far from the transmission lines where all evanescent fields
have decayed sufficiently. Therefore, in the analysis to follow, only
geometries with top and bottom conducting surfaces will be con-
sidered and leakage (if present) will be in the form of parallel plate
modes. Since only shielded (on top and bottom) geometries are to
be studied, there will be no branch cuts in the complex k, plane.

It can be shown that each component of the dyadic spectral
Green’s function for planar strips in a layered dielectric medium
can be written in the form '

SO, ko ¥ ¥0)
DTE(’Y2 + k,%)DTM('YZ + kf)

Guly, ke, v ') = @
* where Drg(T'%) = 0 and Dyy(T'?) = 0 are transcendental equations
for TE and TM modes, respectively, in the layered dielectric me-
dium under study (with no conducting strips). If there are top and
bottom conducting plates (as in the case considered here), these
modes correspond to parallel plate modes; otherwise, the modes
correspond to surface waves. In either case, the propagation con-
stant (imaginary if below cutoff) of the TE or TM mode is I.

It can be shown that the poles of G,; come from the zero’s of
Dry and Dg and therefore one must concentrate on Dqy and Drg
when considering possible poles which may be encountered when
evaluating (1). When considering proper (non-leaky) modes on
printed transmission lines, the integral in (1) can be performed
along the real k, axis. For improper (leaky) modes, however, to
properly account for the exponential transverse growth of the leaky
wave, the contour C must be deformed around appropriate poles of

Im Kx

Fig. 2. Integration path for A > 0. The semi-circle contribution to the
integral vanishes, resulting in the real axis integration equaling an infinite
summation of residues from poles in the top half of the &, plane.

G,, in the complex &, plane. The poles around which C is deformed
correspond to the surface wave(s) or parallel mode(s) to which
leakage occurs. The final contour C for a leaky wave can then be
represented as the usual real axis integration plus the addition of a
finite number of residues [2]. In the following section an efficient
means of computing the real axis integration of (1) for multicon-
ductor printed transmission lines is presented.

B. Asymptotic Technique

Consider the real axis integration of (1) for A > 0. This integral
is evaluated by enclosing the top half of the k, plane, as shown in
Fig. 2, and hence capturing all poles with Im (k) > 0. If A < 0,
the bottom half of the complex k, plane is enclosed. The real axis
contribution to (1) therefore becomes a summation of an infinite
number of residues (each of which can be expressed in closed form):

Ms

I'=2mj 2 Res (VT — 4% 3)
where Im (~TZ% — 4?) > 0. Implicit in (3), and as discussed
above, all poles in (1) are from roots of Drg(T'%) and Dy(T'?). One
also now sees the advantage (when appropriate, as in this study) of
adding top and bottom shields to the numerical solution. By doing
so0, no branch cuts need be evaluated.

In general, an infinite number of terms are required in (3). For
A /A, > 0.1, however, it has been found that only a small number
of terms are required (as will be shown below). The advantage of
this approach is that as A /\, increases a real axis integration of (1)
becomes increasingly inefficient due to the oscillatory nature of the
integral while for such cases fewer and fewer residues are required
to obtain convergence in (3).

To show the accuracy of this approach, consider the geometry
in Fig. I-withe, = 2.25, wl/s = w2/s = 0.4, sp/s = 0.6, d/s
= 1.6, A2 = 0, and k1 /s = 6.4 where s is the separation between
the centers of the two strips:i s = sp + wl. The real axis contri-
bution of (1) will be computed using Gauss-Legendre integration
and with (3). In the example, a first order z-directed expansion
function and a first order x-directed testing function are used in (1)
and k = x, [ = z, and A = 5. The basis functions used are trigon-
ometric functions modified by the edge condition [1]. In Fig. 3(a)
the real and imaginary parts of the integral are shown for the two
integration techniques with 8 /k, = 1.3 (« = 0). Fors/\, < 0.155
the agreement between the two methods is very good (and the in-
tegral is real). For s /N, > 0.155 the solution from (3) is complex
while Gaussian integration gives a real solution that varies wildly.
This suggests an inconsistency in the solution of the real axis con-
tribution to (1) for s /A, > 0.155. This inconsistency involves the
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Fig. 3. Asymptotic (solid) and real axis integration (dashed) evaluation of
(J(|G..|J.>. Referring to Fig. 1, ¢, = 2.25, wl/sp = w2/sp = 0.66,
d/sp =2.66,h2 = 0, and hl /sp = 10.66. The distance s is the separation
between the two strip centers: s = sp + wl. In (a) v /k, = 1.3, in (b) v /k,

= 1.3 for S/\, < 0.155 and v/k, = 1.3 — j0.01 for s /A > 0.155.

fact that for s /A, > 0.155, the first parallel plate mode has a phase
constant that when normalized to k, exceeds 1.3. Hence, to be con-
sistent with the condition for the onset of leakage [2], vy must be
complex for s/\, > 0.155 if 8/k, < 1.3. In Fig. 3(b) the same
integral is computed except that for s /A, > 0.155 a complex v /&,
= 1.3 — jO.01 is used in (3). The agreement between the two
methods is now good for all s/\,. In the above calculations, 20
TE and 20 TM parallel plate modes were used in (3). This method
provides a significant increase in computational efficiency and re-
quires even fewer parallel plate modes when s /), increases beyond
the values in Fig. 3(a) and (b).

III. RESULTS
A. Numerical Considerations

Finding v (in general complex) requires the computation of ma-
trix components of the form in (1). As alluded to above, trigono-
metric basis functions modified by the edge condition are used in
this work. It was found that two even and two odd basis function
for both the longitudinal and transverse current components on each
strip was sufficient to yield convergence in all cases studied. The
computation in (1) involves a real axis integration plus the addition
of a finite number of closed form leaky wave poles when appro-
priate (for complex v) [2]. When A in (1) satisfies A > 0.1\, the
asymptotic procedure outlined above is used, significantly increas-
ing the efficiency of the computations. In the results to be pre-
sented, 30 TE and 30 TM parallel plate modes were used in (3) for
all A > 0.1\,. The roots of the TE and TM parallel plate modes,
T',,, need only be computed once for each frequency and all resi-
dues in (3) can be expressed in closed form. The use of 30 TE and
TM modes was done to assure convergence for all A > 0.1\, en-
countered, but as A/\, increases, far fewer parallel plate modes
need actually be considered. For the cases for which A < 0.1X,,
a standard real axis integration was applied. Typically, less than 5
min of CPU time was required for the computation of  at each
frequency on an IBM RISC 6000 workstation.

B. Example Calculations

To verify the accuracy of the numerical procedure outlined
above, a comparison is made with results computed by Shigesawa

et al. [7] using a mode matching technique for conductor-backed
coplanar strips. In Fig. 4 are shown results for the real and ima-
ginary parts of the propagation constant for the odd coplanar strip
mode. One sees that for frequencies at which the phase constant of
the odd coplanar strip mode is larger than that of the TM, parallel
plate mode, the coplanar strip mode has a real propagation con-
stant. At frequencies where this condition is not met, the coplanar
strip mode is leaky and has a complex propagation constant. In Fig.
4 results are shown from a mode matching procedure [7] and from
the method developed above. For the real part of the propagation
constant, 3, both methods predict a kink in the dispersion curve at
the onset of leakage. There is a slight discrepancy between the 8
at frequencies at which leakage occurs. It should be noted, how-
ever, that Fig. 4(a) may be misleading since the two results never
differ by more than 3% for all s/\,. For the imaginary part of the
propagation constant, ¢, the two methods yield very similar results
except for a slight shift in s /\,. The agreement between the two
methods is reasonable considering the mode matching and spectral
domain techniques are very different approaches with different con-
vergence properties.

The second geometry is a coplanar strip transmission line, the
results for which are shown in Fig. 5. The computations are com-
pared with those in [2] (in which only 8 was given). The agreement
between the computed results and those in [2] is good (over the
entire frequency range, the results always differ by less than 1%).

IV. CONCLUSIONS

An efficient numerical procedure has been described for the anal-
ysis of dispersion and leaky waves on multilayered printed trans-
mission lines. The problem was formulated in the spectral domain,
which resulted in a matrix equation with components represented
as spectral integrals. Making use of the fact that the fundamental
zero-cutoff-frequency modes are slow waves, only leakage in the
form of surface waves or parallel plate modes is possible. In the
analysis, this allowed the placement of conducting shields above
and below the transmission line system. This simplification, in ad-
dition to being appropriate for the problem under study, leads to a
simple asymptotic expression in terms of a sum of closed form
residues (no branch cut integrals). It was demonstrated that the
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Fig. 4. Propagation constant y for the odd conductor-backed coplanar strip
mode. Referring to Fig. 1, ¢, = 2.25, wl/sp = w2/sp = 0.66, d/sp =
2.66, h2=0,and h1 /sp = 10.66; (a) gives 8 (and the propagation constant
of the TM, parallel plate mode) and (b) gives «. A comparison is made
between results computed using the method in this paper and with results
computed previously using a mode matching analysis [7].
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Fig. 5. Real part § of the propagation constant for coplanar strip trans-
mission line. Referring to Fig. 1, ¢, = 10.5, wl/sp w2/sp = 0.5, d/sp
= 2.5, and hl /sp = h2/sp = 5. The solid line represents the results of
this work and the points represent the results of [2].

asymptotic procedure is accurate for expansion and testing func-
tions separated by as few as 0.1 A,.
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The Behavior of the Electromagnetic Field at Edges
of Media with Finite Conductivity

Jochen Geisel, Karl-Heinz Muth, and Wolfgang Heinrich

Abstract—The principal behavior of both electric and magnetic fields
at the edges of media with finite conductivity is investigated. We find
that, as in the case of ideal conductors, the normal electric field shows
a singularity at the edge. The magnetic field components, however,
remain bounded if the permeabilities of the neighboring media do not
differ. Detailed results.on typical geometries are given.

[. INTRODUCTION

It is well-known that singular points of the electric and the mag-
netic fields may occur at edges (e.g., [1], [2]). This is important,
for instance, when checking the validity of surface integrals. More-
over, one can incorporate the order of singularity explicitly into
numerical descriptions, which leads to very efficient modeling tools
(e.g.: The basis functions used in the common spectral-domain ap-
proaches).

For the case of perfectly conducting media, detailed results are
reported in the literature (see [1], [2]). Fig. 1 shows the corre-
sponding geometry and the notation used here. A cylindrical co-
ordinate system is used. We consider the equivalent 2-dimensional
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