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, field andthat therelative complex pemeability of the material be

of unit magnitude. Limitations for practical sorting systems in terms

of accuracy, stability, and object properties are to be determined.

Also, a variety of other types of microwave resonators could be

used for this purpose.
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Efficient Computation of High-Frequency

Two-Dimensional Effects in Multiconductor

Printed Interconnects

Lawrence Carin

Abstract–The spectral domain technique with a Galerkin moment

method solution is used to study high-frequency, two-dimensional

effects such as dispersion and leakage in mrrlticonductor printed inter-
connects. A simple asymptotic procedure is used to significantly im-

prove the convergence of oscillatory spectral integrals involving distant

expansion and testing functions. Examples are given for leaky waves

on two mrdticonductor printed transmission line geometries.
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I. INTRODUCTION

Multiconductor transmission lines have been the interest of nu-

merous researchers for several decades. Recently, there has been

much interest in multiconductor printed transmission lines used as

interconnects in high-speed integrated circuits [1], [2]. In this pa-

per, concentration will be placed on developing an asymptotic

technique for the efficient numerical analysis of high-frequency,

two-dimensional effects such as dispersion and leakage in printed

interconnects.

The numerical analysis is formulatd in the spectral domain with

a Galerkin moment method solution [1], [2]. Although this method

is well known, special care must be taken when studying high-

frequency effects such as dispersion and leakage. The reaction in-

tegrals which must be evaluated in the moment method solution are

often highly oscillatory. This is especially true for the problem at

hand: since a multiconductor system is considered, expansion and

testing functions will often be relatively far apart in space. This

coupled with the fact that leakage and dispersion usually are im-

portant at relatively high frequencies, leads to spectral integrals

which are often highly oscillatory and hence CPU intensive.

Oscillatory integrals occur often in electromagnetic problems and

therefore several asymptotic techniques have been developed for

their evaluation. Much previous work has been directed at the in-

vestigation of three-dimensional layered problems and has led to

analyses which, although general, are more complicated than what

is needed in this two-dimensional study. In three-dimensional lay-

ered problems, each matrix component in a moment method solu-

tion consists of a dlouble inverse Fourier transform (found using a

plane wave spectral formulation) [3]. Only under very special con-

ditions (see Appendix I of [4]), not possible for most practical test-

ing and expansion functions, can this double integral be reduced to

a one-dimensional Sommerfeld type integral. Hence, most pre-

vious asymptotic treatments of spectral integrals have dealt with

the efficient computation of the Green’s function [5], [6], which

for a three (or two) dimensional layered problem can be written as

a single semi-infinite integral of the Sommerfeld type [4]. In these

approaches, after efficiently determining the space domain Green’s

function, one is still required to evaluate space domain integrals

involving expansion and testing functions. The key difference be-

tween the asymptotic procedure developed here and those used pre-

viously for three-dimensional problems is that for distant expansion

and testing functicms, the entire matrix component is efficiently

evaluated asymptotically in the spectral domain, without the need

for subsequent space domain integration.

In Section II, the spectral domain technique is briefly reviewed

and then, by considering the physical nature of modes on printed

interconnects, an efficient asymptotic technique is developed for

studying high-frequency effects in mukiconductor printed intercon-

nects. The asymptotic technique is then used to study leaky waves

on two example structures, and the results are compared with data

in the literature.

II. ANALYSIS

A. Formulation

The spectral domain technique with a Galerkin moment method

solution [1], [2] will be used to calculate the complex propagation

constants for multiconductor printed transmission lines, such as that

depicted in Fig. 1. This analysis results in a matrix equation with
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Fig. 1. Layered printed transmission geometry for which results are given

in this paper. Layers 1 and 3 are air and layer 2 has dielectric constant e,.

components of the form

where GA, (7, kx, y; y‘) is the spectral dyadic Green’s function com-

ponent for a k-directed electric field component located at y due to

an l-directed surface current located at y‘, ~,{ (k., y‘ ) is an l-directed

expansion current in the spectral domain located at Y‘, ~fk(k.,, Y) is

a k-directed testing function in the spectral domain located at y,

and A is the distance in x between the centers of the testing and

expansion functions in the space domain. In (l), 1 and k can both

be either x or z and the superscript * denotes complex conjugate.

The spectral integral exists on the real axis unless poles are en-

countered and/or integration around branch cuts is required. In (1)
–i~~ longitudinal dependence (Yit is assumled the modes have an e

= P –ja).

In printed transmission line applications, one usually operates in

a regime in which all higher order modes are below cutoff and are

therefore only of importance at discontinuities (which are not ad-

dressed here). This paper will therefore concentrate on the N – 1

zero-cutotT-frequency modes in an N conductor system [1]. Since

these modes are slow-waves, no radiation into space-waves will

exist. Hence an open physical structure (no top and/or bottom con-

ducting surfaces) can be accurately modeled by placing conducting

covers far from the transmission lines where all evanescent fields

have decayed sufficiently. Therefore, in the analysis to follow, only

geometries with top and bottom conducting surfaces will be con-

sidered and leakage (if present) will be in the form of parallel plate

modes. Since only shielded (on top and bottom) geometries are to

be studied, there will be no branch cuts in the complex k,, plane.

It can be shown that each component of the dyadic spectral

Green’s function for planar strips in a layered dielectric medium

can be written in the form

Gk[(y, L, Y; Y’) =
f(7> L Y; Y’)

D~~(T2 + k:)DT~(y2 + k:)
(2)

where D~~(r 2, = O and D~@ 2, = O are transcendental equations

for TE ancl TM modes, respectively, in the layered dielectric me-

dium under study (with no conducting strips). If there are top and

bottom conducting plates (as in the case considered here), these

modes correspond to parallel plate modes; otherwise, the modes

correspond to surface waves. In either case, the propagation con-

stant (imaginary if below cutoff) of the TE or TM mode is r.

It can be shown that the poles of (& come from the zero’s of

DT~ and 11~~ and therefore one must concentrate on DT~ and DT~

when considering possible poles which may be encountered when

evaluating (1). When considering proper (non-leaky) modes on

printed transmission lines, the integral in (1) can be performed

along the real kX axis. For improper (leaky) modes, however, to

properly account for the exponential transverse growth of the leaky

wave, the contour C must be deformed around appropriate poles of

Im Kx

Fig. 2. Integration path for A, > 0. The semi-circle contribution to the

integral vanishes, resulting in the real axis integration equaling an infinite
summation of residues from poles in the top half of the k., plane.

G~, in the complex k, plane. The poles around which C is deformed

correspond to the surface wave(s) or parallel mode(s) to which

leakage occurs. The final contour C for a leaky wave can then be

represented as the usual real axis integration plus the addition of a

finite number of residues [2]. In the following section an efficient

means of computing the real axis integration of (1) for multicon-

ductor printed transmission lines is presented.

B. Asymptotic Technique

Consider the real axis integration of(1) for A >0. This integral
is evaiuated by enclosing the top half of the k., plane, as shown in

Fig. 2, and hence capturing all poles with Im (k,) >0. If A <0,

the bottom half of the complex k. plane is enclosed. The real axis

contribution to (1) therefore becomes a summation of an infinite

number of residues (each of which can be expressed in closed form):

m

I = 2z-j i~o Res (~) (3)

where Im (~) > 0. Implicit in (3), and as discussed

above, all poles in (1) are from roots of DT~(r 2, and DT~(r 2,. One

also now sees the advantage (when appropriate, as in this study) of

adding top and bottom shields to the numerical solution. By doing

so, no branch cuts need be evaluated.

In general, an infinite number of terms are required in (3). For

A/A,, >0.1, however, it has been found that only a small number

of terms are required (as will be shown below). The advantage of

this approach is that as A/kc, increases a real axis integration of ( 1)

becomes increasingly inefficient due to the oscillatory nature of the

integral while for such cases fewer and fewer residues are required

to obtain convergence in (3).

To show the accuracy of this approach, consider the geometry

in Fig. 1 with e, = 2.25, wl/s = w2/s = 0.4, sp/s = 0.6, d/s

– 1.6, lz2 = O, and hl /s = 6.4 where s is the separation between—

the centers of the two strips: s = sp + WI. The real axis contri-

bution of (1) will be computed using Gauss-Legendre integration

and with (3). In the example, a first order z-directed expansion

function and a first order x-directed testing function are used in (1)

and k = x, 1 = z, and A = s. The basis functions used are trigon-

ometric functions modified by the edge condition [1]. In Fig. 3(a)

the real and imaginary parts of the integral are shown for the two

integration techniques with ~/k,, = 1.3 (a = O). Fors/& <0.155

the agreement between the two methods is very good (and the in-

tegral is real). For s/& > 0.155 the solution from (3) is complex

while Gaussian integration gives a real solution that varies wildly.

This suggests an inconsistency in the solution of the real axis con-

tribution to (1) for s/ A,, > 0.155. This inconsistency involves the
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Fig. 3. Asymptotic (solid) andreal axis integration (dashed) evaluation of

(J, [G,. IJ,). Referring to Fig. 1, t, = 2.25, wl/sp = w,2/sp = 0.66,
d/sp =2.66, h2 =0, andhl/sp = 10.66 .Thedistance sisthe separation
between thetwostrip centers: $=sp+wl .In(a).y/k,, = 1.3, in(b) y/k,,
= 1.3 for S/k,, < 0.155 and T/k,, = 1.3 –jO.Olfor s/& >0.155.

factthatfors/h<, > 0.155, the first parallel platemodehas a phase

constant that when normalized tok{, exceeds 1.3. Hence, to be con-

sistent with the condition for the onset of leakage [2], -y must be

complex for s/& > 0.155 if (3/k<, < 1.3. In Fig. 3(b) the same

integral iscomputed except that fors/A,, > 0.155 acomplex 7/k,,

= 1.3 – jO.01 is used in (3). The agreement between the two

methods is now good for all s/k,). In the above calculations, 20

TE and 20 TM parallel plate modes were used in (3). This method

provides a significant increase in computational efficiency and re-

quires even fewer parallel plate modes when s/& increases beyond

the values in Fig. 3(a) and (b).

III. RESULTS

A. Numerical Considerations

Finding -y (in general complex) requires the computation of ma-

trix components of the form in (1). As alluded to above, trigono-

metric basis functions modified by the edge condition are used in

this work. It was found that two even and two odd basis function

for both the longitudinal and transverse current components on each

strip was sufficient to yield convergence in all cases studied. The

computation in (1) involves a real axis integration plus the addition

of a finite number of closed form leaky wave poles when appro-

priate (for complex -y) [2]. When A in (1) satisfies A >0.1 k,,, the

asymptotic procedure outlined above is used, significantly increas-

ing the efficiency of the computations. In the results to be pre-

sented, 30 TE and 30 TM parallel plate modes were used in (3) for

all A > 0. 1A,,. The roots of the TE and TM parallel plate modes,

r,,, need only be computed once for each frequency and all resi-

dues in (3) can be expressed in closed form. The use of 30 TE and

TM modes was done to assure convergence for all A > 0.1 h,, en-
countered, but as A/ A,, increases, far fewer parallel plate modes

need actually be considered. For the cases for which A < 0.1 A,,,

a standard real axis integration was applied. Typically, less than 5

min of CPU time was required for the computation of T at each

frequency on an IBM RISC 6000 workstation.

B. Example Calculations

To verify the accuracy of the numerical procedure outlined

above, a comparison is made with results computed by Shigesawa

et al. [7] using a mode matching technique for conductor-backed

coplanar strips. In Fig. 4 are shown results for the real and ima-

ginary parts of the propagation constant for the odd coplanar strip

mode. One sees that for frequencies at which the phase constant of

the odd coplanar strip mode is larger than that of the TMO parallel

plate mode, the coplanar strip mode has a real propagation con-

stant. At frequencies where this condition is not met, the coplanar

strip mode is leaky and has a complex propagation constant. In Fig.

4 results are shown from a mode matching procedure [7] and from

the method developed above. For the real part of the propagation

constant, (3, both methods predict a kink in the dispersion curve at

the onset of leakage. There is a slight discrepancy between the ~

at frequencies at which leakage occurs. It should be noted, how-

ever, that Fig. 4(a) may be misleading since the two results never

differ by more than 3% for all s/h,). For the imaginary part of the

propagation constant, a, the two methods yield very similar results

except for a slight shift in s/h,,. The agreement between the two

methods is reasonable considering the mode matching and spectral

domain techniques are very different approaches with different con-

vergence properties.

The second geometry is a coplanar strip transmission line, the

results for which are shown in Fig. 5. The computations are com-

pared with those in [2] (in which only (3 was given). The agreement

between the computed results and those in [2] is good (over the

entire frequency range, the results always differ by less than 1%).

IV. CONCLUSIONS

An efficient numerical procedure has been described for the anal-

ysis of dispersion amd leaky waves on multilayered printed trans-

mission lines. The problem was formulated in the spectral domain,

which resulted in a matrix equation with components represented

as spectral integrals. Making use of the fact that the fundamental

zero-cutoff-frequency modes are slow waves, only leakage in the

form of surface waves or parallel plate modes is possible. In the

analysis, this allowed the placement of conducting shields above

and below the transmission line system. This simplification, in ad-

dition to being appropriate for the problem under study, leads to a

simple asymptotic expression in terms of a sum of closed form

residues (no branch cut integrals). It was demonstrated that tbe
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Fig, 4. Propagation constant ~forthe oddconductor-backed coplanar strip
mode. Referring to Fig. 1, e, = 2.25, W1/Sp = w2/sp = 0.66, d/Sp =

2.66, h2=0, andhl/sp= 10.66 ;(a) gives B(andthe propagation constant

of the TMO parallel plate mode) and (b) gives a. A comparison is made
between results computed using themethod inthispaper and with results
computed previously using a mode matching analysis [7].
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Fig, 5. Real part (J of the propagation constant for coplanar strip trans-
mission line. Referring to Fig. 1, e, = 10.5, wl/spw2/sp = o.5, d/sp
= 2.5, andhl/sp.= h2/sp = 5. The solid line represents the results of
this work and the points represent the results of [2].

asymptotic procedure is accurate for expansion and testing func-

tionsseparated byasfewas O.l A,,.
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The Behavior of the Electromagnetic Field at Edges

of Media with Finite Conductivity

Jochen Geisel, Karl-Heinz Muth, and Wolfgang Heinrich

Abstract–The principal behavior of both electric and magnetic fields

at the edges of media with finite conductivity is investigated. We find

that, as in the case of ideal conductors, the normal electric field shows

a singularity at the edge. The magnetic field components, however,
remain bounded if the permeabilities of the neighboring media do not

differ. Detailed resultson typical geometries are given.

I. INTRODUCTION

It is well-known that singular points of the electric and the mag-

netic fields may occur at edges (e. g., [1], [2]). This is important,

for instance, when checking the validity of surface integrals. More-

over, one can incorporate the order of singularity explicitly into

numerical descriptions, which leads to very efficient modeling tools

(e.g.: The basis functions used in the common spectral-domain ap-

proaches).

For the case of perfectly conducting media, detailed results are

reported in the literature (see [1], [2]). Fig. 1 shows the corre-

sponding geometry and the notation used here. A cylindrical co-

ordinate system is used. We consider the equivalent 2-dimensional
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